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a b s t r a c t

Stochastic partial differential equations are introduced for the continuum concentration
fields of reaction–diffusion systems. The stochastic partial differential equations account
for fluctuations arising from the finite number of molecules which diffusively migrate and
react. Spatially adaptive stochastic numerical methods are developed for approximation
of the stochastic partial differential equations. The methods allow for adaptive meshes
with multiple levels of resolution, Neumann and Dirichlet boundary conditions, and
domains having geometries with curved boundaries. A key issue addressed by the meth-
ods is the formulation of consistent discretizations for the stochastic driving fields at
coarse-refined interfaces of the mesh and at boundaries. Methods are also introduced
for the efficient generation of the required stochastic driving fields on such meshes. As
a demonstration of the methods, investigations are made of the role of fluctuations in
a biological model for microorganism direction sensing based on concentration gradients.
Also investigated, a mechanism for spatial pattern formation induced by fluctuations. The
discretization approaches introduced for SPDEs have the potential to be widely applicable
in the development of numerical methods for the study of spatially extended stochastic
systems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In many systems a fundamental role is played by the spatial distribution of molecular species which undergo diffusive
migrations while participating in chemical reactions. Examples include the synthesis and processing of materials, intracel-
lular signaling in biology, and morphogenic processes in the development of tissues [38,49–53,70,73]. In many reaction–
diffusion systems, the most interesting features are exhibited only in a sub-region of the spatial domain, such as in a
chemically active front or in a layer near boundaries. Also, in many systems, an important role is played by the conditions
at the boundaries or by the geometry of the boundaries [33,51,52]. A commonly used approach to model such reaction–
diffusion systems is to use continuum field descriptions at the mean-field level for the local concentration of a molecular
species. Such models are often expressed in terms of deterministic partial differential equations (PDEs). While this ap-
proach works well for many problems, at sufficiently small length-scales fluctuations are expected to arise in continuum
field descriptions as a consequence of the finite number of molecules and neglected microscopic positional and momenta
degrees of freedom.
. All rights reserved.
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To account for such fluctuations, we formulate stochastic partial differential equations (SPDEs) which introduce Gaussian
stochastic fields into the PDE description of reaction–diffusion systems. We consider contributions from the intrinsic density
fluctuations arising primarily from the finite number of molecules undergoing diffusive migrations, as opposed to fluctua-
tions arising from the chemical reactions. The fluctuations are modeled by the stochastic fields using the fluctuation–dissi-
pation principle of statistical mechanics.

When numerically approximating SPDEs, a number of issues arise which are not present in the corresponding determin-
istic setting. Numerical approximation of SPDEs requires both discretization of the partial differential equations and discret-
ization of the stochastic driving fields. As a consequence of the stochastic driving fields, solutions of SPDEs are often not as
smooth as solutions of the corresponding undriven deterministic PDE. Solutions of SPDEs often exist only in a generalized
sense in a space of non-differentiable functions or in a space of linear functionals (distributions) [45,47,48,54]. Caution must
be taken when formulating discretizations for such solutions. For example, traditional approaches such as finite difference
methods often rely on the Taylor Theorem which requires smoothness to ensure accuracy. As an alternative, spectral meth-
ods can be formulated for SPDEs which rely on less-stringent results from approximation theory to ensure accuracy [24,25].
Fourier series provide one widely used approach for spectral approximation. While such spectral methods are useful for
many SPDEs, they are typically restricted to domains having periodic boundaries or rather simple geometries and are often
not readily amenable to adaptivity. To cope with this issue, finite element methods have also been introduced for the approx-
imation of SPDEs [26]. As a consequence of the non-smoothness of solutions the rate of convergence is much slower than in
the deterministic setting [26,27].

We shall introduce an approach for the derivation of discretizations based on finite difference methods for the approx-
imation of SPDEs. To obtain accurate methods, the approach approximates solutions of the SPDEs by stochastic field values
which correspond to solutions which are spatially averaged on length-scales comparable to the lattice spacing of the discret-
ization mesh. Stochastic numerical methods are formulated allowing for adaptive multilevel meshes, Neumann and Dirichlet
boundary conditions, and domains having geometries with curved boundaries. A key issue addressed by the methods is the
development of consistent discretizations of the stochastic driving fields at coarse-refined interfaces of the mesh and at
boundaries. As a demonstration of the issues encountered at coarse-refined interfaces, an empirical study is performed to
show results for different discretization choices at such interfaces. For the derived discretizations, analysis is carried out
which shows convergence of the methods as the underlying mesh is refined.

As a demonstration of the developed stochastic numerical methods, simulation studies are carried out for two applica-
tions. The first application studies the effect of fluctuations in microorganism direction sensing based on concentration gra-
dients. The case investigated concerns a single cell which senses concentration gradients in an environment exhibiting a
shallow gradient obscured by fluctuations. The biological cell is represented by a region having a disk-like geometry with
Neumann boundary conditions. A gradient is induced in the concentration of an external signaling molecule by specifying
at two walls the concentrations through Dirichlet boundary conditions. The stochastic numerical methods are utilized on
a domain having a geometry defined by the two walls and region exterior to the disk. Results are reported for the role of
fluctuations in a biological model recently proposed for cell gradient sensing [33].

The second application studies fluctuation-induced pattern formation in spatially extended systems. A variant of the
Gray–Scott chemical reactions is considered in a regime where the deterministic reaction–diffusion system only exhibits
a localized stationary pattern. When introducing fluctuations, a rich collection of patterns emerge over time, in which spot-
ted patterns migrate, combine, and replicate. The adaptive features of the stochastic numerical methods are used to track at
high resolution the dynamically evolving regions where the reactions are chemically active.

The proposed SPDEs give a model for intrinsic concentration fluctuations in reaction–diffusion systems. At the level of the
continuum concentration fields, the model captures fluctuations arising from the finite number of molecules undergoing dif-
fusive migrations. The stochastic numerical methods allow for adaptive approximation of solutions on domains having
rather general geometries and boundary conditions. The approaches introduced for the derivation of discretizations for
the SPDEs and for the development of the numerical methods are expected to be widely applicable in the study of spatially
extended stochastic systems.
2. SPDEs accounting for fluctuations in reaction–diffusion systems

Reaction–diffusion systems are often modeled by partial differential equations which account for the evolution of the
continuum concentration fields as the molecular species diffusively migrate and undergo chemical reactions. At sufficiently
small length-scales, fluctuations arise in continuum field descriptions as a consequence of the finite number of molecules
and as a consequence of neglected microscopic positional and momenta degrees of freedom. To account for such fluctuations
in reaction–diffusion systems we consider stochastic partial differential equations (SPDEs) of the form
@cðx; tÞ
@t

¼ rx � Drxcðx; tÞ þ F½c� þ nðx; tÞ; ð2:1Þ

hnðx; tÞnTðx0; tÞi ¼ Kðx;x0Þdðt � t0Þ: ð2:2Þ
In the notation, c denotes the composite vector of concentration fields for the chemical species. The termrx � Drxc accounts
for diffusion of the chemical species and is based on a generalization of Fick’s Law allowing for non-isotropic diffusion. The
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tensor D characterizes the rate at which chemical species undergo diffusive migrations and is assumed to be symmetric and
positive definite. Throughout, we assume that the chemical species diffuse independently, which corresponds to D being a
matrix which is block diagonal. The block matrices DðiÞ correspond to the diffusion of the ith chemical species and are of size
d� d, where d is the number of spatial dimensions. The term F accounts for the chemical reactions. In general, F denotes a
non-linear functional of the concentration fields which can be either stochastic or deterministic. In the present work, we con-
sider only the case where F depends deterministically on c. Throughout, F will be treated generically with only specific forms
for the functional defined in Sections 9.1, 9.2 and 9.3. The term n accounts for fluctuations and is a Gaussian stochastic field
which is d-correlated in time with mean zero and spatial covariance K. In the notation, h�i denotes expectation with respect
to the probability distribution of a random variable.

To derive a specific form for the Gaussian stochastic field n we make a number of simplifying assumptions. We consider
the physical regime where fluctuations are small relative to the mean concentration. We also consider the case where fluc-
tuations are dominated by contributions from the diffusive migrations of the molecular species as opposed to the chemical
reactions. These assumptions correspond to the fluctuations of the concentration field at thermodynamic equilibrium having
covariance [4,5,7–9]
hðcðxÞ � �cÞðcðx0Þ � �cÞi ¼ �cdðx� x0Þ; ð2:3Þ
where �c denotes the mean concentration. To determine the spatial covariance structure of n we use a variant of the fluctu-
ation–dissipation principle of statistical mechanics.

At thermodynamic equilibrium and within the regime of linear responses of the system, the fluctuation–dissipation prin-
ciple maintains that relaxation from a perturbed state caused by an external field occurs in the same manner as relaxation
from a perturbed state caused by fluctuations [2,7]. As a consequence, the dissipative operators of the dynamics and equi-
librium covariance can be related to the covariance structure of the fluctuations driving the system. This can be expressed as,
see [2,7],
K ¼ �AC� C�A�; ð2:4Þ
where A�; C� denote the adjoint of the operators. From Eqs. (2.2) and (2.3) we have
A ¼ rx � Drx; ð2:5Þ
C ¼ �cdðx� x0Þ: ð2:6Þ
Since the product of the operators in this case is self-adjoint the covariance structure of the driving fluctuations can be ex-
pressed as
Kijðx;x0Þ ¼ �2�cidijrx � DðiÞrxdðx� x0Þ; ð2:7Þ
where for the ith molecular species �ci ¼ hcii denotes the mean concentration. We have used that AC ¼ ðACÞ� ¼
C�A�;K ¼ �2AC. This determines the stochastic driving field n in Eq. (2.2) since n is Gaussian. The stochastic partial differ-
ential equations provide a model at the continuum level for the near equilibrium fluctuations in the concentration fields of
reaction–diffusion systems.

3. Discrete approximation of the SPDEs

For SPDEs, numerical approximation requires both discretization of the partial differential equations and discretization of
the stochastic driving fields. When numerically approximating SPDEs of the form of Eq. (2.2), issues arise which are not pres-
ent in the corresponding deterministic PDE setting. As a consequence of the stochastic driving fields, solutions are not de-
fined pointwise but only in a generalized sense in a space of linear functionals (distributions) [45,47,48,54]. We formulate
discretizations which approximate numerically the action of these linear functionals.

For discretization in space of Eq. (2.2) and the stochastic driving field n, we divide the spatial domain X into a partition of
cells fXmgM

m¼1. The partition is required to have the property X ¼ [M
m¼1Xm. The partition is also required to have intersections

which are of measure zero mðX‘ \XmÞ ¼ 0, for ‘ – m, under the Lebesgue measure m [42]. To approximate solutions numer-
ically, we use stochastic field values obtained by averaging solutions over the volume of each partition cell
cmðtÞ ¼
1
jXmj

Z
Xm

cðx; tÞdx: ð3:1Þ
To approximate the dynamics of cmðtÞ, we use a stochastic process satisfying
dct ¼ Lctdt þ fdt þ dgt : ð3:2Þ
In the notation, ct denotes the composite vector of concentrations over all chemical species and all the sets Xm at time t. The
term L is a discrete operator which accounts for diffusion of the molecular species and approximates r � Dr in Eq. (2.2). The
term f accounts for the chemical reactions and approximates F. The term gt is an Ito stochastic process accounting for fluc-
tuations and approximates n [8,11]. The Eq. (3.2) is to be interpreted in the sense of an Ito Stochastic Differential Equation
[8,11].
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The stochastic driving field n of the continuum system given in Eq. (2.1) is a Gaussian process with mean zero and with d-
correlation in time. Since the averaging procedure of Eq. (3.1) is linear, we also take gt to be a Gaussian stochastic process
with mean zero and with d-correlation in time. With this assumption the process gt can be expressed in terms of increments
of Brownian motion as
dgt ¼ QdBt : ð3:3Þ
In the notation, dBt are increments of a vector-valued Brownian motion with n independent components and Q is an m� n
matrix [11]. A particularly useful property of expression (3.3) is that Q can be directly related to the spatial covariance C of
the stochastic process gt by
dgtdgT
t0

� �
¼ hQdBtdBT

t0Q
Ti ¼ QIdðt � t0Þdtdt0Q T ¼ Cdðt � t0Þdtdt0: ð3:4Þ
This implies that
C ¼ QQT : ð3:5Þ
We have used the identity of Ito Calculus that hdBtdBT
t0 i ¼ Idðt � t0Þdtdt0, which in our notation corresponds to Ito’s Isometry

[11].
In this approach to approximating SPDEs, the discretization of the partial differential equation and the stochastic driving

field play an inter-connected role in the equilibrium fluctuations exhibited by the discretized system. A consistent choice for
these two components of the discretization is required to ensure that the discretized system accurately approximates the
equilibrium fluctuations of the continuum system. We let the covariance of the equilibrium fluctuations of the discrete sys-
tem be denoted by
C ¼ hðc� �cÞðc� �cÞTi: ð3:6Þ
Since the stochastic fields are Gaussian, this requires the covariance matrix C approximate the covariance operator C of Eq.
(2.6). We study specific forms taken by C in later sections.

We now derive a variant of the fluctuation–dissipation principle of statistical mechanics for the discretized system which
establishes a relationship between L, C, and C. This is carried out in the case when F ¼ 0. For this purpose we consider at time
t the covariance of concentration fluctuations
Ct ¼ hðct � �cÞðct � �cÞTi: ð3:7Þ
From Ito’s Lemma [11] and Eq. (3.2) we have
d½ðct � �cÞðct � �cÞT � ¼ ðdctÞðct � �cÞT þ ðct � �cÞðdctÞT þ ðdctÞðdctÞT

¼ Lðct � �cÞðct � �cÞT dt þ ðct � �cÞðct � �cÞT LT dt þ QQ T dt þ QdBtðct � �cÞT þ ðct � �cÞdBT
t Q T : ð3:8Þ
In our notation, Ito’s Lemma [11] corresponds to dBtdBT
t ¼ Idt; dtdt ¼ 0, and dBtdt ¼ dtdBT

t ¼ 0. Taking the expectation in
probability of both sides of Eq. (3.8) we obtain
dCt ¼ ðLCt þ CtL
T þ CÞdt: ð3:9Þ
This was obtained by using C ¼ QQT ; hdBti ¼ 0, and Eq. (3.7).
As the system approaches the statistical steady-state, corresponding to thermodynamic equilibrium, we have Ct ! C and

dCt ! 0. From Eq. (3.9) this yields
C ¼ � LC þ CLT
� �

: ð3:10Þ
In the case that LC is symmetric, this expression simplifies to
C ¼ �2LC: ð3:11Þ
This establishes a fluctuation–dissipation principle for the discretized system relating L, C, and C.
To obtain consistent discretizations of both the partial differential equation and stochastic driving field, we use Eq. (3.10)

to determine a C so that the error is controlled in the discrete system when approximating the equilibrium fluctuations of
the continuum system. For this purpose, we require the discrete system have equilibrium fluctuations with covariance
C‘;m ¼ ðc‘ � �c‘Þðcm � �cmÞT
D E

¼ C
jXmj

d‘;m: ð3:12Þ
The Cij ¼ �cidij and �ci ¼ hcii. This determines C from Eq. (3.10). This choice for C corresponds to the equilibrium fluctuations of
the continuum system spatially averaged over each partition cell Xm. For any choice of partition Xm and consistent discret-
ization L, Eq. (3.10) gives a covariance structure C for the stochastic driving field which realizes a given choice of C for the
equilibrium fluctuations. Formally, as the mesh is refined, if we have C ! C and L! A ¼ rx � Drx, then we have
C ¼ �LC � CLT ! �AC� C�A� ¼ K. This suggests that such an approach provides a means to obtain consistent discretizations



3478 P.J. Atzberger / Journal of Computational Physics 229 (2010) 3474–3501
of the stochastic driving field n of Eq. (2.2), while controlling the errors in the equilibrium fluctuations of the discrete system.
After deriving specific discretizations using this approach and developing stochastic numerical methods to generate effi-
ciently the required stochastic fields, we revisit the issue of convergence in Section 8.

4. Transformation of the operator $ �D$ to the Laplacian

A change of variable can be made which transformations r � Dr into a standard Laplacian D. This will be used to put the
differential operator into a more convenient form for numerical approximation. The change of variable is based on the spe-
cial properties of D.

Since the chemical species are assumed to diffuse independently, the diffusion tensor D has diagonal blocks D(k) of size
d� d, where d is the spatial dimension of the system. This allows for the full differential operator to be decomposed into a
sum of components of the form
rx � Drx ¼
X

k

rx � DðkÞrx: ð4:1Þ
The block matrix DðkÞ corresponds to diffusion of the kth chemical species. Each matrix DðkÞ is symmetric and can be diago-
nalized by a unitary matrix
~DðkÞ ¼ ðPðkÞÞT DðkÞPðkÞ; ð4:2Þ
where ~DðkÞ denotes a diagonal matrix and PðkÞ denotes a unitary matrix. Under the linear change of variable ~x ¼ Rx, the gra-
dient and divergence operators become
rx ¼ Rr~x; ð4:3Þ
rx� ¼ r~x � RT : ð4:4Þ
This gives
rx � DðkÞrx ¼ r~x � RT DðkÞRr~x: ð4:5Þ
Since DðkÞ is assumed positive definite, we can let R ¼ Pð~DðkÞÞ�1=2. Under this change of variable the differential operator be-
comes a standard Laplacian from Eq. (4.5),
rx � DðkÞrx ¼ D~x: ð4:6Þ
Since the operators rx � DðkÞrx are decoupled, we introduce for the concentration field of each chemical species a separate
coordinate system ~xðkÞ ¼ RðkÞx and let ck ¼ ckð~xðkÞ; tÞ. With the choice RðkÞ ¼ PðkÞð~DðkÞÞ�1=2the full differential operator becomes
a standard Laplacian
rx � Drx ¼ D~x: ð4:7Þ
To simplify the discussion, we assume throughout that this coordinate transformation is made to Eq. (2.2) before numerical
approximation.

5. Meshes with multiple levels of resolution

In many reaction–diffusion systems, interesting features are exhibited only in a sub-region of the spatial domain, such as
in a chemically active front or in a layer near boundaries [33,51,52]. For such systems we introduce discretizations based on
meshes which allow for multiple levels of resolution. Two important issues arise in the context of SPDEs which are not pres-
ent in the deterministic PDE setting. The first issue is the need for consistent discretizations of the stochastic driving field at
coarse-refined interfaces of the mesh, where there are changes in the spatial resolution of the mesh. The second issue is the
need for efficient methods to generate efficiently the required stochastic driving fields on such meshes. We discuss discret-
izations for the Laplacian on multilevel meshes and then introduce stochastic numerical methods addressing these two
issues.

5.1. Discretization of the Laplacian on multilevel meshes

To obtain discretizations on multilevel meshes, we express the Laplacian in terms of the gradient and divergence
operators
D ¼ DG : Laplacian Operator ð5:1Þ
D ¼ r: : Divergence Operator ð5:2Þ
G ¼ r : Gradient Operator ð5:3Þ



Fig. 5.1. Meshes with multiple levels of resolution. The mesh defines a discretization of space into a collection of square partition cells Xm index by m,
(upper left). For discretizations approximating the divergence and gradient differential operators, values are stored at both the center of each partition cell
and at the centers of the faces of each partition cell. The cell center data is denoted by + and the face centered data is denoted by �. Discretizations must
handle the coarse-refined interfaces of the mesh where there is a change in spatial resolution. For this purpose, a partition cell cluster is defined which
consists of the coarse partition cell A and its four neighbors in the direction of the interface BCDE, (lower panel). For the face of A shared with BC, we assume
the face centered value of A is the average of the face centered values of BC. The partition with different levels of spatial resolution is represented using a
data structure based on quad-trees (upper right).
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To approximate the operators, we define for any discretization mesh a partition of the spacial domain fXmgm, see Fig. 5.1. For
a given partition cell Xm we allow for numerical values to be defined both at the center of the partition cell and at the center
of the faces of the partition cell. We approximate the Divergence Operator D at the center of a partition cell using
ðDbÞm ¼
1

Dxm

X4

k¼1

bm;k � nm;k: ð5:4Þ
The term bm;k denotes the vector value at the center of the kth face of the partition cell Xm. The b denotes the composite
vector of all such values on the partition. The nm;k denotes the outward normal to the kth face of the partition cell. The term
Dxm is the width of the partition cell. The notation ð�Þm denotes the component corresponding to the value at the center of the
partition cell with index m. A useful property of this approximation to the divergence operator is that its evaluation only
requires at the face centers the components in the normal direction, see the dot product in Eq. (5.4).

We approximate the Gradient Operator G at the center of the faces of each partition cell. Given the different levels of res-
olution in the mesh, many cases can arise in principle. By convention, we restrict our methods to deal with meshes which
have the nested property that neighboring cells differ in resolution by at most one level. This requires only two cases be con-
sidered at each face of a partition cell. The first is when the neighboring cell is at the same level of spatial resolution. This
corresponds to Dxm ¼ Dx‘k

, where ‘k denotes the index of the neighbor in the direction of the kth face of the partition cell. The
second is when the neighboring cells differ by one level of resolution, Dxm ¼ 2Dx‘k

or Dxm ¼ 1
2 Dx‘k

.
To approximate the gradient operator on a face shared with a neighbor at the same level of resolution, we use
ðGcÞðkÞm;k ¼ signðnðkÞm;kÞ
c‘k
� cm

Dxm
: ð5:5Þ
In the notation ð�Þm;k denotes the components corresponding to the vector value at the center of the kth face of the partition
cell with index m. The notation ð�ÞðkÞ denotes the kth vector component. The discrete gradient operator only defines the kth
vector component at each face since this is all that is required by the discrete divergence operator D of Eq. (5.4).

To approximate the gradient operator on faces shared between neighbors differing by one level of spatial resolution, we
must consider a cluster of partition cells. To simplify the discussion, we consider the case where the partition cell with index
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m has neighbors at the kth face which are of a more refined level of resolution, Dxm ¼ 2Dx‘k
. We define the cluster to be the

collection of partition cells consisting of the partition cell with index m (labeled A) and the four neighboring partition cells in
the direction of the outward normal of the kth face (labeled B;C;D; E), see Fig. 5.1. The components of the gradient operator
are approximated by
ðGcÞðkÞB ¼ signðnðkÞm;kÞ
1
2 ðcB þ cCÞ � cA

3
4 Dxm

; ð5:6Þ

Gcð ÞðkÞC ¼ signðnðkÞm;kÞ
1
2 ðcB þ cCÞ � cA

3
4 Dxm

; ð5:7Þ

ðGcÞðkÞA ¼
1
2
ðGcÞðkÞB þ ðGcÞðkÞC

h i
: ð5:8Þ
To obtain a discretization of the Laplacian D on meshes with multiple levels of resolution, we use the approximation
L ¼ DG: ð5:9Þ

The discrete gradient operator G and discrete divergence operator D are defined by Eqs. (5.4)–(5.7) and (5.8). Similar discret-
izations have been used in [14–16].

Using this approach to discretize the Laplacian allows for both Neumann and Dirichlet boundary conditions to be imposed
readily on rectangular domains. For Neumann conditions the domain is discretized so that faces of the partition cells align
with the domain boundary. To impose the Neumann conditions the values of components of the gradient are specified at the
center of faces of the partition coinciding with the boundary. For Dirichlet boundary conditions the domain is discretized so
that the centers of the partition cells align with the domain boundary. To impose the Dirichlet boundary conditions the val-
ues are specified at the center of partition cells coinciding with the boundary. The Laplacian is then computed using Eq. (5.9),
where the range of the gradient and divergence operators are restricted to the non-boundary values of the partition cells.

5.2. Discretization of the stochastic driving field on multilevel meshes

For the development of stochastic numerical methods approximating Eq. (2.2) the stochastic driving field n must be dis-
cretized both in space and in time. On multilevel meshes, obtaining useful discretizations for the stochastic driving field
encounter a number of issues. One issue is to obtain spatial discretizations of the stochastic driving field which handle
coarse-refined interfaces of the mesh, where there are changes in the spatial resolution of the mesh. Another issue is to de-
velop methods which can generate efficiently the discretized stochastic fields on the multilevel mesh with the required
covariance structure.

To handle coarse-refined interfaces, we derive spatial discretizations using the fluctuation–dissipation principle estab-
lished for the discrete system in Eq. (2.4) of Section 2. We obtain a discretization by considering how equilibrium fluctua-
tions of the discrete system approximate the equilibrium fluctuations of the continuum system. We require the discrete
system have equilibrium fluctuations with covariance C given by
C‘;m ¼
C

Dx2
m

d‘;m; ð5:10Þ
where Cij ¼ �cidij and �ci ¼ hcii. This choice of covariance C corresponds to the equilibrium fluctuations of the continuum sys-
tem obtained when solutions are spatially averaged over each of the partition cells, see Eq. (3.1).

To obtain a spatial discretization of the stochastic driving field, we use this C and the fluctuation–dissipation principle
established by Eq. (3.10). This requires the covariance C of the stochastic driving field satisfy
C ¼ �2LC: ð5:11Þ
To obtain this expression, we have used that the product LC is symmetric for the specific choice of covariance C given in Eq.
(5.10) and discretization of the Laplacian L given in Eq. (5.9). This provides one approach for obtaining a spatial discretiza-
tions for the stochastic driving field on multilevel meshes handling the coarse-refined interfaces. We compare this spatial
discretization with other choices in Section 6.

The stochastic driving field must also be discretized in time. The SPDE given in Eq. (2.2) is approximated by the following
stochastic process, see Section 3,
dct ¼ Lctdt þ fdt þ QdBt; ð5:12Þ
QQT ¼ C: ð5:13Þ
To obtain a numerical approximation of Eq. (2.2), the stochastic process of Eq. (5.12) must be discretized in time. We use the
Euler–Maruyama Method [10] which gives the discretization
cnþ1 ¼ cn þ LcnDt þ fnDt þ gn: ð5:14Þ
The cn denotes the composite vector of concentrations of the molecular species over the mesh at time tn ¼ nDt. The time-step
is denoted by Dt. The term gn denotes a vector-valued Gaussian random variate with mean zero and covariance
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hðgmÞðgnÞTi ¼ CDtdm;n: ð5:15Þ
For the precise definition of the covariance C of g, reference the Eqs. 5.11, 5.10 and 5.9. The random variates g provide the
discretization both in space and in time for the stochastic driving field n of Eq. (2.2). For numerical methods based on this
approach, an important issue is whether the variates g can be generated efficiently on the multilevel mesh with the required
covariance given in Eq. (5.15). For other possible temporal discretizations, see [10,13].

5.3. Generation of the discretized stochastic driving fields on multilevel meshes

Efficient generation methods are needed for the random variates of the discretized stochastic driving field g on the mul-
tilevel mesh. The variates g are Gaussian with mean zero and have covariance given by Eq. (5.15). To simplify the discussion
we focus on methods to generate random variates g with covariance C given in Eq. (5.11). The random variates g can be gen-
erated readily from g, since the covariances of g and g differ only by a scalar factor. We also consider only the case of a single
chemical species, since the stochastic driving field of each species is statistically independent. The methods naturally extend
to the multiple chemical species case by generating the stochastic driving field for each species separately.

Our approach is based on splitting g into the sum of two other random variates g1;g2, with g ¼ g1 þ g2. For such a split-
ting, the covariance g can be expressed as
C ¼ Cð1;1Þ þ Cð2;2Þ þ Cð1;2Þ þ Cð2;1Þ; ð5:16Þ
Cðj;kÞ ¼ hgjg

T
ki: ð5:17Þ
The Cðj;kÞ denotes the covariance of gj with gk, for j; k 2 f1;2g. If the two random variates g1 and g2 are independent then
Cð1;2Þ ¼ Cð2;1Þ ¼ 0. This gives
C ¼ C1 þ C2: ð5:18Þ

For notational convenience, we denoted C1 ¼ Cð1;1Þ and C2 ¼ Cð2;2Þ. This provides a useful link between matrix factorization
of C and the splitting of a random variate g into the sum of two independent random variates. For such a matrix factorization
to be of practical interest, the generation of g1 and g2 must be easier than the generation of g. For the factorization to cor-
respond to the splitting of a random variate g, the factors C1 and C2 must be symmetric positive semidefinite in Eq. (5.18).

To obtain a factorization, we consider modification of the discrete divergence and gradient operators defined in Sec-
tion 5.1. In the matrix representation of the discrete divergence operator, the matrix entries in each row correspond to
weights for values at the face centers of the partition cells, see Eq. (5.4) and Fig. 5.1. We define the modified divergence oper-
ator D0, by setting matrix entries to zero for weights corresponding to values at the center of faces shared along the coarse-
refined interfaces. In the matrix representation of the discrete gradient operator G0, the matrix entries correspond to weights
for values at the centers of the partition cells, see Eqs. (5.5), (5.6), and Fig. 5.1. We define the modified gradient operator G0,
by setting matrix entries to zero for weights corresponding to values at the center of partition cells bordering immediately
the coarse-refined interfaces.

With these modifications the discrete operators satisfy
G0 ¼ �D0T : ð5:19Þ

A modified Laplacian can be defined by
L0 ¼ D0G0 ¼ �D0D0T : ð5:20Þ
For the factorization of C, we use
C1 ¼ �2L0C; ð5:21Þ
C2 ¼ C� C1: ð5:22Þ
For this to be useful, we must have that the factors C1;C2 are symmetric positive semidefinite and we must have efficient
methods to generate g1 with covariance C1 and g2 with covariance C2.

To obtain methods to generate g1 with covariance C1, we use properties of the modified discrete operators. An important
property is that the matrices L0;C1, and C are all block diagonal for the same entries. This follows since the modified Laplacian
corresponds to imposing Neumann boundary conditions at the coarse-refined interfaces. The Neumann boundary conditions
serve to decouple domains with different levels of spatial resolution. As a result of decoupling, we obtain a collection of dis-
tinct domains each having a uniform level of spatial resolution. In Fig. 5.1 the mesh shown in the upper left has three such
domains. We denote the block matrices by L0ðkÞ;CðkÞ1 , and CðkÞ, which each correspond to the domain with uniform spatial res-
olution indexed by k.

The block matrices of the covariance C have entries
CðkÞ‘;m ¼
�c

Dx2
m

d‘;m; ‘;m 2 J k: ð5:23Þ
The �c ¼ hci denotes the average concentration and in the case of a single species is a scalar, see Eq. (3.12). The J k denotes the
set of permitted indices for the entries of the kth block. Since the mesh resolution is uniform on the spatial domain corre-
sponding to this block we have
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CðkÞ ¼
�c

Dx2
k

IðkÞ: ð5:24Þ
The IðkÞ is an identity matrix for the entries of the kth block, with zero entries elsewhere. We have used that on the kth spatial
domain, Dxm ¼ Dxk for all indices m 2 J k, where Dxk is the uniform partition size. Results for the single species case extend
naturally by generating independently the stochastic driving field for each chemical species.

The block matrices for C1 can be expressed as
CðkÞ1 ¼ �2L0ðkÞC 0ðkÞ ¼ ðQ ðkÞ1 ÞðQ
ðkÞ
1 Þ

T
; ð5:25Þ

Q ðkÞ1 ¼
ffiffiffiffiffiffi
2�c
p

Dxk
D0ðkÞ

 !
: ð5:26Þ
This factorization allows for the variates g1 to be generated for each block by
gðkÞ1 ¼ Q ðkÞ1 nðkÞ: ð5:27Þ
The nðkÞ are standard Gaussian random variates with independent components having mean zero and variance one. The nota-
tion ½��ðkÞ denotes restriction to the vector components corresponding to the spatial domain with index k. In assignment of
vector values using this notation, all of the non-indexed components are set to zero. We generate g1 by sweeping over all
of the uniform spatial domains indexed by k to obtain
g1 ¼
X

k

gðkÞ1 : ð5:28Þ
This method provides an efficient means by which to generate the random variates g1.
To evaluate the cost of this procedure, we denote by N the number of components of partition cells. The procedure re-

quires generating a total of N independent standard Gaussian random variates, performing a matrix-vector multiplication,
and sweeping over the uniform spatial domains indexed by k. The generation of the Gaussian variates can be accomplished
with OðNÞ operations [63]. The matrix representation of the discrete divergence operator is sparse with a constant number of
non-zero entries per row. Since Q ðkÞ1 has the same sparse structure, the matrix-vector multiplications can be performed with
a total of OðNÞ operations. Using sparse data structures, the summation performed when sweeping over the uniform spatial
domains can be performed with a total of OðNÞ operations. This shows the method generates the random variate gðkÞ1 with an
optimal asymptotic cost of only OðNÞ operations.

To obtain methods to generate g2 with covariance C2, we consider the remaining entries of C. By the definition of the
modified discrete operators L0, it can be shown that C2 is block diagonal. In this case, the blocks correspond to each partition
cell face involved in a coarse-refined interface. Associated with each such face is a cluster of partition cells consisting of one
coarse cell and two refined cells which are immediate neighbors in the direction of the interface, see Fig. 5.1. The blocks are
given by
CðjÞ2 ¼
8�c

3Dx2
j

M; ð5:29Þ

M ¼
1 �2 �2
�2 4 4
�2 4 4

264
375: ð5:30Þ
The faces of the coarse cells shared along the coarse-refined interface are indexed by j, see Fig. 5.1. The Dxj denotes the width
of the coarse partition cell of the cluster. An important technical point concerns partition cells which are involved in more
than one cluster, such as at a corner, see Fig. 5.1. In this case, we use the convention that the repeated entries of the over-
lapping blocks for such partition cells are added together. This can be shown to give correctly the full matrix.

For the factorization given by Eq. (5.18) to be valid, the factor C2 is required to be positive semidefinite. This property can
be investigated by considering the eigenvalues of the matrix M. These are given by
k1 ¼ 0; k2 ¼ 0; k3 ¼ 9: ð5:31Þ
This shows that C2 is indeed positive semidefinite and the factorization is valid.
To generate the random variates g2, we use the eigenvectors of M. The orthonormal eigenvectors are given by
vðjÞ1 ¼
1ffiffiffi
5
p

2
1
0

264
375; vðjÞ2 ¼

1
3
ffiffiffi
5
p

2
�4
5

264
375; vðjÞ3 ¼

1
3

1
�2
�2

264
375: ð5:32Þ
The random variate is obtained for the cluster indexed by j by
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gðjÞ2 ¼
ffiffiffiffiffiffiffiffiffiffiffi

8�c
3Dx2

j

s
nðjÞ1

ffiffiffiffiffi
k1

p
vðjÞ1 þ nðjÞ2

ffiffiffiffiffi
k2

p
vðjÞ2 þ nðjÞ3

ffiffiffiffiffi
k3

p
vðjÞ3

� �
: ð5:33Þ
The nðjÞ‘ denote independent standard Gaussian random variates with mean zero and variance one. This expression can be
simplified since k1 ¼ k2 ¼ 0. This gives
gðjÞ2 ¼
2
ffiffiffiffiffiffi
6�c
p

Dxj
nðjÞ3 vðjÞ3 : ð5:34Þ
We generate g2 by sweeping over all of the clusters indexed by j to obtain
g2 ¼
X

j

gðjÞ2 : ð5:35Þ
This method provides an efficient means by which to generate g2.
To evaluate the cost of this procedure, we denote by N the number of partition cells. The generation procedure requires

generating one Gaussian random variates for each cluster, a scalar-vector multiplication, and a sweep over the clusters index
by j. By counting the number of clusters and using sparse data structures the procedure can be carried out with at most OðNÞ
computational operations. In practice, the actual cost is expected to be smaller since clusters only occur for partition cells at
coarse-refined interfaces, which will typically make up only a small subset of the mesh. This method for generating g2 has an
optimal asymptotic computational cost of OðNÞ operations.

To generate the variate g we add the results from the procedure generating g1 and g2. Since this addition costs only OðNÞ
operations, we have shown that this method generates g with an optimal asymptotic computational cost of OðNÞ operations.
This method is significantly more efficient than commonly used approaches for correlated variates, such as Cholesky factor-
ization [63]. The Cholesky algorithm applied to C costs OðN3Þ operations and generally produces a non-sparse factor [63].
Another drawback is that this factorization needs to be performed each time the structure of the adaptive mesh changes.
For the generation of each random variate, a matrix-vector multiplication must be performed. Since the matrix factor is gen-
erally not sparse, each generation of a random variate costs OðN2Þ operations. The method using Eq. (5.22) performs signif-
icantly better than this, having instead a computational cost of only OðNÞ operations.

In summary, the presented procedure for computing the random variate g by splitting it into two random variates g1 and
g2 provides a potentially versatile tool for generating random variates with a specified covariance structure. The method re-
lies on being able to factor the covariance C into C1 and C2 with random variates g1 and g2 which are easier to compute than
g. In the case of adaptive multilevel meshes such a factorization is found for the covariance C required by Eq. (5.11). In this
case, the procedure is shown to have an optimal asymptotic computational cost of OðNÞ operations.
5.4. Neumann and Dirichlet boundary conditions

In the case of Neumann and Dirichlet boundary conditions, the discretized stochastic driving fields have an adjusted
covariance structure C. The covariance is adjusted by modifying the Laplacian operator L and covariance C appearing in
Eq. (5.11). In the matrix representation of L and C the entries correspond to weights at the center of the partition cells.

For Dirichlet boundary conditions the domain is discretized so that the centers of the partition cells align with the domain
boundary. To account for the Dirichlet boundary conditions, the covariance matrix C is modified to obtain bC by setting all
entries to zero which correspond to the partition cells comprising the boundary. The covariance of the stochastic driving field
is given by
Ĉ ¼ �2LbC : ð5:36Þ
The stochastic driving field with covariance Ĉ is generated using the methods of Section 5.3.
For Neumann conditions the domain is discretized so that faces of the partition cells align with the domain boundary. To

handle the Neumann boundary conditions, the discrete divergence operator D is modified to obtain �D by setting all entries to
zero which correspond to faces of the partition cells which comprise the boundary. A modified Laplacian can be defined by
�L ¼ �DG. The covariance of the stochastic driving field is given by
�C ¼ �2�LC: ð5:37Þ
The stochastic driving field with covariance �C is generated using the methods of Section 5.3.
We remark that the only cases considered were deterministic Neumann and Dirichlet boundary conditions. However,

there may be applications in which stochastic boundary conditions are of interest. In this case, entries corresponding to
the random fluxes or concentrations could be prescribed on the boundaries. The terms would contribute in the model
through the use of boundary values in the evaluation of the discrete Laplacian appearing in Eq. (3.2). Depending on the sys-
tem modeled, for such stochastic boundary conditions the stochastic driving field may require additional modification to
yield consistency with statistical mechanics.
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6. Equilibrium fluctuations at coarse-refined interfaces

Studies of the statistical features of a system often use stochastic numerical methods to generate a dynamical trajectory
over a long period of time. The statistics are then estimated from the dynamical trajectory by performing an averaging over
time, subject to ergodicity assumptions [2,3]. Statistics estimated in this manner include probability expectations corre-
sponding to thermodynamic equilibrium and correlation functions in space and time [3]. For long trajectories, discretization
errors are expected to accumulate significantly. The rate and nature of this accumulation is expected to play an important
role in the accuracy of estimated statistics.

We investigate the contributing role of errors introduced by the spatial discretization of the stochastic driving field. We
focus particularly on errors at the coarse-refined interfaces of a multilevel mesh. To highlight features of our approach to
spatial discretization, and to highlight issues which can arise at such interfaces, we compare our approach with an alterna-
tive based on the use of random fluxes. For the different methods, we investigate the role of the accumulation of spatial dis-
cretization errors on the quality of the covariance of the equilibrium fluctuations of the discretized system at coarse-refined
interfaces.

Each spatial discretization of the stochastic driving field which we consider, corresponds to a specific choice for the
covariance C. For a given choice of C, the equilibrium fluctuations of the spatially discretized system have covariance
Fig. 6.1
system
covaria
C ¼ �1
2

L�1C: ð6:1Þ
We have used Eqs. (3.2) and (5.11).
As an alternative to the discretized stochastic driving field which we introduced in Section 5.2, we consider an approach

based on random fluxes at the coarse-refined interface. For uniform meshes the stochastic driving field can be generated by
taking the discrete divergence of independent random fluxes at the center of faces of the partition cells [5,7]. A natural exten-
sion to multilevel meshes is to introduce at the coarse-refined interface random fluxes at the face centers of the refined par-
tition cells BC of each cluster, see Fig. 5.1. For the coarse partition cell A of each cluster, the total flux across the shared face
into A is the sum of the fluxes at BC. This is represented in the area weighted fluxes by setting the face centered flux of the
coarse cell to be the average of the random fluxes at BC.

To investigate the approach based on random fluxes for the discretization of the stochastic driving field, we construct C
and use Eq. (6.1). It is found that while the discretization errors in the driving field are localized at the coarse-refined inter-
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Fig. 6.2. The top row shows the covariance of the equilibrium fluctuations of the system for each choice of the stochastic driving field at a cell at the coarse-
refined interface on the coarse side (see + symbol). In the second row, the covariance with this cell is plotted as a function of y at cross sections of the mesh
near the interface. A color figure showing more clearly the fluctuations on the mesh is available in the on-line version of the paper.
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face they contribute to the equilibrium fluctuations in a non-local manner. For the equilibrium fluctuations, this has the ef-
fect of introducing spatial correlations which extend several partition cells into the mesh away from the coarse-refined inter-
face, see Figs. 6.1 and 6.2.

We investigate the propagation of localized errors at the coarse-refined interface. As a model for the spatial discretization
error in the stochastic driving field we use a ‘‘white-noise” stochastic field. Since the equations are linear, the contributions
of the errors in the stochastic driving field to the equilibrium fluctuations can be obtained from Eq. (6.1) with the special
choice for C
C‘;m ¼ d‘;m: ð6:2Þ
In this case, the resulting C gives the contributions of the errors to the equilibrium fluctuations. It is found that while the
errors are localized and uncorrelated in space, they propagate over time and introduce long-range correlations in the covari-
ance structure of the equilibrium fluctuations of the discrete system, see Figs. 6.1 and 6.2.

In contrast, our discretization of the stochastic driving field has by design equilibrium fluctuations with a prescribed
covariance structure which is uncorrelated in space, see Eqs. (5.10), (5.11), and Figs. 6.1 and 6.2. The discretization errors
in this approach are constrained by requiring that the discrete system exhibit exactly the spatially averaged equilibrium fluc-
tuations of the continuum system. While there are discretization errors with respect to the continuum stochastic driving
field, the constraints introduce errors which propagate on the mesh in such a manner that they do not introduce long-range
correlations in the equilibrium fluctuations of the system. When compared with the discretization based on random fluxes,
this feature is expected to give more accurate results for the estimation of spatial correlation functions of the system.

The approach we introduce for controlling the errors contributed by spatial discretization of the stochastic driving field is
potentially useful in developing stochastic numerical methods for many types of SPDEs. The approach provides a method by
which to spatially discretize the stochastic driving fields by controlling the errors in the fluctuations of the discretized sys-
tem at statistical steady-state. We further highlight features of this approach to spatial discretization in the convergence
analysis developed in Section 8.
7. Meshes with curved boundaries

For many applications it is natural to consider reaction–diffusion systems on spatial domains having a geometry with
curved boundaries. In pattern forming systems the geometry along with boundary conditions are expected to play an impor-
tant role. The geometry is expected to effect the possible eigenmodes of the system and constrain perturbations which effect
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stability [49,51,52]. In biological applications, it is expected that the location within a cell or tissue may dramatically effect the
rates of diffusivity and reactivity of the chemical species. One natural modeling approach is to decompose space into disjoint
but coupled domains on which separate reaction–diffusion equations are parameterized and solved to account for local effects
[52]. For biological systems, the individual regions are expected to have complicated geometries [1,73]. The discretizations
introduced previously for the Laplacian on structured multilevel meshes only allow for rectangular boundaries, see Section 5.
We extend the applicability of the presented methods by developing discretizations for domains with curved boundaries.

7.1. Discrete approximation of the Laplacian on meshes with curved boundaries

To obtain accurate results for the Laplacian on domains with non-rectangular geometries requires the development of
appropriate discretizations in the vicinity of the curved boundaries. To simplify the discussion, we consider geometries
which have only smooth boundaries. We also only consider the case of Neumann boundary conditions imposed on the
curved boundary. Our approach is based on a finite volume discretization of the Laplacian and is a variant of the methods
referred to as Embedded Boundary Methods, Cartesian Grid Methods, Cut-Cell Methods, see [17–23].

The boundary is approximated over the regular structured mesh by piecewise linear segments. The linear segments are
defined by connecting the points of intersection of the boundary with the faces of the partition cells fXmg, see Fig. 7.1. We
refer to any partition cell containing a linear boundary segment as a ‘‘cut-cell.” From the assumed smoothness of the bound-
ary, it is always possible to refine sufficiently the mesh so that each partition cell contains at most one linear boundary seg-
ment. For each cut-cell of the boundary Xm, two sub-regions are defined. The first sub-region corresponds to the part inside
the solution domain of the reaction–diffusion system and is denoted by X0m. The second corresponds to the region outside the
solution domain and is denoted by X00m. The full partition cell is always assumed to be the union of these two parts,
Xm ¼ X0m [X00m.

To obtain a discretization of the Laplacian, we use the Gauss Divergence Theorem on each partition cell [66]
Fig. 7.1
right is
full par
the face
denotes
concen
Z
X0m

Dcdx ¼
Z
@X0m

JdAx; ð7:1Þ

J ¼ �rc � n: ð7:2Þ
The n denotes the inward normal on the partition boundary @X0m. The X0m refers to the part of the partition cell inside the
solution domain. The J denotes the inward concentration flux across the face per unit length.

A discretization is obtained for the Laplacian by approximating the two sides of Eqs. (7.1) and (7.2). By treating the Lapla-
cian as constant on each partition cell and the concentration gradient as constant on each partition face, we obtain the
discretization
½Lc�m ¼
1
jX0mj

X
k

J½k�m j@X
0
m;kj: ð7:3Þ
The jX0mj denotes the area of the inside sub-region of the partition cell indexed by m. The j@X0m;kj denotes the length of the kth
face of the inside sub-region of the partition cell. The J½k�m denotes the concentration flux across the kth face into the interior
sub-region.
. Domain with a curved boundary and cut-partition cells: on the left is shown the disk-shaped domain for the reaction–diffusion system. On the
shown for a cut cell, partition cells of the mesh used for computing the concentration flux J½1�m . The symbol + denotes the location of the center of the
tition cells. The symbol � denotes the location of the center of the faces of the partition cells. For cut faces, the center is located at the mid-point of

segment inside the solution domain. The light region denotes for the partition cells the sub-regions X0m inside the solution domain. The dark region
for the partition cells the sub-regions X00m outside the solution domain. On the right are shown for the interior sub-region X0m1

the inward
tration fluxes labeled by J½k�m .
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The concentration field of the chemical species is represented by values at the center of each full partition cell, even when
the partition cell is cut by a boundary. This center value is used even when the full partition cell center falls within the exte-
rior sub-region X00m. In this latter case, the value at the cell center can be thought of as representing the extrapolation of a
smooth concentration field solution into the exterior sub-region. This approach of using values at the center of the full par-
tition cell is based on the work of [23].

For the discretization in Eq. (7.3) to be useful, accurate estimates are required for the concentration fluxes J½k�m . Estimates
are needed only for the faces aligned with the Cartesian directions. The concentration flux on the curved boundary is spec-
ified since we are only considering the case of Neumann boundary conditions. To estimate the concentration flux at a given
face, a bilinear interpolation is made to define locally a concentration field
~c½k�ðxÞ ¼ abcm1 þ ð1� aÞbcm2 þ að1� bÞcm3 þ ð1� aÞð1� bÞcm4 ;

aðxÞ ¼ ðxð1Þ2 � xð1ÞÞ=Dx;

bðxÞ ¼ ðxð2Þ4 � xð2ÞÞ=Dx: ð7:4Þ
For the mth partition cell and kth face we assign m1 ¼m. The other indices m2;m3;m4 are assigned to the nearest neighbors
in the direction of the kth face. For the collection of partition cells for the case of k ¼ 1 and k ¼ 2, see Fig. 7.1. The notation
ð�Þð‘Þ refers to the vector component indexed by ‘. The notation ð�Þ½k� refers to values associated with the face indexed by k. The
flux is estimated by
J½k�m ¼ �r~c½k�ðxk�Þ � n½k�m : ð7:5Þ
The xk� denotes the location of the center of the face, where the center location depends on how the face is cut by the bound-
ary, see Fig. 7.1. The n½k�m denotes the inward normal of the kth face.

Even though only linear interpolation was used, in fact the estimate is second order accurate for the flux evaluated at the
center of faces aligned with the cartesian directions. We discuss this for the case of estimating J½1�m , where the center of the
face has component xð1Þ1� ¼ 1

2 ðx
ð1Þ
2 þ xð1Þ1 Þ. In the case of a full partition cell where the face is not cut, Eq. (7.5) yields the usual

central difference approximation for the gradient component in the x-direction
J½1�m ¼
cm2 � cm1

Dx
: ð7:6Þ
This shows the estimate is second order accurate in the case of an uncut cell.
In the case of a partition cell in which a face is cut, the estimate corresponds to a linear interpolation in the y-direction of

two central difference approximations for the gradient component in the x-direction, see Eqs. (7.4) and (7.5),
J½1�m ¼ b
cm2 � cm1

Dx
þ ð1� bÞ cm4 � cm3

Dx
: ð7:7Þ
Since each central difference is second order accurate, the linear interpolation ensures the estimate at the face center is also
second order accurate. Using these estimates in Eq. (7.3) yields a first order accurate discretization of the Laplacian. For a
more detailed discussion, see [23].

At curved boundaries we use the discretization for the Laplacian defined by Eqs. 7.3, 7.4 and 7.5. For the approximation of
the SPDEs given in Eq. (2.2), the stochastic driving field must be discretized at the curved boundaries. Approximation at
curved boundaries poses a challenge, since the partition cells have non-homogeneous areas and geometries defined by
the boundary. This irregularity must be handled in the discretization of the stochastic driving field. For a discretization to
be useful in practice, methods are needed for the efficient generation of random variates with the required covariance struc-
ture representing the discrete stochastic driving field.

7.2. Discretization of the stochastic driving field on meshes with curved boundaries

To discretize the stochastic driving field on meshes with curved boundaries, we take an approach similar to the case of
multilevel meshes discussed in Section 5. The approach uses the fluctuation–dissipation principle established for the discrete
system in Eq. (3.10). The curved boundary introduces irregular terms in the discretizations as a result of the non-homoge-
neous areas and face lengths of the cut partition cells. To obtain a consistent spatial discretization of the stochastic driving
field, the covariance of the equilibrium fluctuations C is specified to be
C‘;m ¼
C
jX0mj

d‘;m: ð7:8Þ
The Cij ¼ �cidij and �ci ¼ hcii is the average concentration of the ith chemical species. For each partition cell, the jX0mj is the area
of the sub-region within the solution domain. This choice of covariance C corresponds to the equilibrium fluctuations of the
continuum system obtained when the concentration field is spatially averaged over the interior sub-region of each partition
cell, see Eq. (3.1).

For the choice of equilibrium covariance C in Eq. (7.8) and the discrete Laplacian L in Eq. (7.3), the discretized stochastic
driving field has the covariance C given by
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C ¼ �LC � CLT : ð7:9Þ
The stochastic driving field must also be discretized in time. The SPDE given in Eq. (2.2) is approximated by the following
stochastic process, see Section 3,
dct ¼ Lctdt þ fdt þ QdBt; ð7:10Þ
QQT ¼ C: ð7:11Þ
To obtain a numerical approximation of Eq. (2.2), the stochastic process of Eq. (7.11) must be discretized in time. We use the
Euler–Maruyama Method [10] which gives the discretization
cnþ1 ¼ cn þ LcnDt þ fnDt þ gn: ð7:12Þ
The cn denotes the composite vector of concentrations of the molecular species over the mesh at time tn ¼ nDt. The time-step
is denoted by Dt. The term gn denotes a vector-valued Gaussian random variate with mean zero and covariance
hðgmÞðgnÞTi ¼ CDtdm;n: ð7:13Þ
For the precise definition of the covariance C of g, reference the Eqs. 7.9, 7.8 and 7.3. The random variates g provide the dis-
cretization both in space and in time for the stochastic driving field n of Eq. (2.2). For numerical methods based on this ap-
proach, an important issue is whether the variates g can be generated efficiently on meshes with curved boundaries having
the required covariance given in Eq. (7.13).

7.3. Generation of the discretized stochastic driving fields on meshes with curved boundaries

To obtain efficient generation methods for the variates of the discretized stochastic driving field g on meshes with curved
boundaries, we use a splitting approach similar to the one used in Section 5.3. To simplify the discussion we focus on meth-
ods to generate random variates g with covariance C given in Eq. (7.9). The random variates g can be generated readily from
g, since the covariances of g and g differ only by a scalar factor.

To generate the random variate g we shall use the splitting g ¼ g1 þ g2 into two independent random variates g1;g2. The
covariance of g;g1, and g2 then satisfy
C ¼ C1 þ C2: ð7:14Þ
For details of how this is obtained and notational conventions, see Section 5.3.
To obtain C1 we consider a modified Laplacian. The discrete divergence operator has a matrix representation in which the

entries correspond to weights on the faces of the partition cells. The modified divergence operator D00 is obtained by setting
to zero all weights for faces shared with a cut partition cell. For the matrix representation, all rows are set to zero corre-
sponding to cut partition cells. This defines a divergence operator D00 which is non-zero only on the domain consisting of
the uncut partition cells. We similarly modify the discrete gradient operator to obtain G00 by setting to zero all weights asso-
ciated with the cut-partition cells and faces shared with cut-partition cells.

An important property of the modified divergence and gradient is
D00 ¼ �G00: ð7:15Þ
We define a modified Laplacian by
L00 ¼ D00G00 ¼ �D00ðD00ÞT : ð7:16Þ
The modified Laplacian is non-zero only on the domain of uncut partition cells. For this domain, the modification corre-
sponds to imposing Neumann conditions on rectangular boundaries having a stair-case-like geometry. The factor C1 is de-
fined by
C1 ¼ �2L00C; ð7:17Þ
C2 ¼ C� C1: ð7:18Þ
From Eq. (7.16) the factor C1 can be explicitly factored using an approach similar to the one used in Section 5.3, see Eq. (5.26).
The explicit factorization also allows for a similar generation method to be used for the random variates, see Section 5.3. The
computational cost of generating the random variates by these methods is OðNÞ operations, where N is the total number of
partition cells.

To obtain C2 we consider the remaining entries of the covariance. This factor is more difficult to handle since the entries
are irregular. The entries correspond to weights over the cell centers of cut-partition cells which have different areas and
geometries. The covariance matrix C2 can be shown to be block diagonal. Each block is denoted by CðqÞ2 and corresponds
to each disjoint collection of partition cells which are cut by the boundaries. The blocks CðqÞ2 can be shown to be positive
semidefinite, which shows the splitting provides a valid factorization of C in Eq. (7.14). The semidefiniteness poses issues
for the use of commonly used generation methods, such as the Cholesky factorization. The Cholesky factorization requires
positive definiteness.
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To handle this issue we use that CðqÞ2 is symmetric, which ensures a complete basis of orthonormal eigenvectors [61]. We
generate the random variate using
gðqÞ2 ¼
XMq

k¼1

nðqÞk

ffiffiffiffiffiffiffi
kðqÞk

q
vðqÞk : ð7:19Þ
The kðqÞk denotes the kth eigenvalue and vðqÞk denotes the kth orthonormal eigenvector. The nðqÞk denote independent Gaussian
random variables with mean zero and variance one. The notation ð�ÞðqÞ refers to the vector components associated with the
indices of the matrix block indexed by q. We denote by Mq the number of components of gðqÞ2 . To obtain the random variate
g2, a sweep is made over all blocks
g2 ¼
Xn

q¼1

gðqÞ2 : ð7:20Þ
We denote by n the total number of blocks.
To evaluate the cost of generating random variates, we consider each step of the above procedure. The eigenvalue and

eigenvectors can be obtained for CðqÞ2 with a computational cost of OðM3
qÞ operations [61,67]. Since this must be performed

for each block, the total cost of computing the eigenvectors and eigenvalues is Oð
Pn

q¼1M3
qÞ. While this has an unfavorable M3

q

scaling, the number of partition cells Mq which are cut by the curved boundary comprise a lower one dimensional set and
will often be only a small fraction of the partition cells of the mesh. Also, this eigenvector-eigenvalue procedure is only re-
quired when the geometry of the curved boundaries of the mesh change. For many problems this procedure is only required
once at the beginning of a simulation.

To evaluate the cost of generating the random variate gðqÞ2 , the sum in Eq. (7.19) must be considered. In general, the eigen-
vectors will have almost all non-zero vector components. As a consequence the generation of each random variate gðqÞ2 from
the sum in Eq. (7.19) has a cost of OðM2

qÞ operations. Using sparse data structures, the sum in Eq. (7.20) can be evaluated with
a cost of Oð

Pn
q¼1MqÞ operations. Once the eigenvalues and eigenvectors are known, this gives for the generation of each ran-

dom variate g2, the cost of Oð
Pn

q¼1M2
qÞ operations.

The introduced methods allow for the generation of each random variate g with a computational cost of OðN þ
Pn

q¼1M2
qÞ,

where N is the total number of partition cells in the mesh. Obtaining the required factors for the generation method has a
computational cost of OðN þ

Pn
q¼1M3

qÞ. While the curved boundaries introduce a non-optimal M2
q and M3

q scaling in the meth-
ods, the introduced approach is still expected to be much more efficient than commonly used approaches. For instance, a
direct eigenvector decomposition of C would cost OðN3Þ to generate the required factors and OðN2Þ to generate each random
variate g. The approach we introduce is significantly more efficient since the number of partition cells Mq which are cut by
the curved boundary comprise a lower one dimensional set and will often be only a small fraction of N. This substantially
reduces the size of the matrices for which the expensive eigenvector decomposition procedure must be performed and yields
a more efficient generation procedure for g.

8. Convergence of the stochastic numerical methods for the linearized equations

The proposed stochastic numerical methods are shown formally to converge in the case when the system is near steady-
state and the fluctuations are small relative to the mean concentration. As discussed in Section 1, the solutions of Eq. (2.2) do
not have classical solutions in terms of functions with well-defined pointwise values. Instead, the solutions are represented
by linear functionals (distributions) [45,46,48]. To simplify the discussion and to avoid delving into too many technical is-
sues, we formally demonstrate a form of weak convergence of the stochastic numerical methods which are semi-discretized
in space. We consider bounds only in terms of the infinity norm, but it is expected that similar bounds can also be developed
for the L2-norm.

The form of weak convergence we consider corresponds to convergence of the moments of linear functionals A of the
form
aðx; tÞ ¼ A½c� ¼
Z

X

Z t

0
aðx; y; sÞcðy; sÞdsdy ð8:1Þ
when numerically approximated by eA of the form
~aðx; tÞ ¼ eA½c� ¼X
m

Z t

0
aðx; ym; sÞ~cmðsÞdsDxd

m: ð8:2Þ
The aðx; y; sÞ is a bounded compactly supported function which is smoothly varying in space x,y and in time s. The form of
weak convergence we consider is defined as convergence of all moments
MðnÞeA1 ;eA2 ;...;eAn
�MðnÞ

A1 ;A2 ;...;An

��� ���! 0; as Dx! 0: ð8:3Þ
The nth moment is defined by
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MðnÞ
A1 ;A2 ;...;An

ðx1; t1;x2; t2; . . . ; xn; tnÞ ¼ ha1ðx1; t1Þa2ðx2; t2Þ � � � anðxn; tnÞi; ð8:4Þ

MðnÞeA1 ;eA2 ;...;eAn
ðx1; t1;x2; t2; . . . ;xn; tnÞ ¼ h~a1ðx1; t1Þ~a2ðx2; t2Þ � � � ~anðxn; tnÞi: ð8:5Þ
This convergence is required for each moment n P 1 and for any choice of functionals A1;A2; . . . ;An of the form of Eq. (8.1)
when approximated by eA1; eA2; . . . ; eAn of Eq. (8.2). The formal analysis will use the infinity-norm defined by
kf ðx1; t1;x2; t2; . . . ; xn; tnÞk1 ¼ sup
x1 ;...xn ;t1 ;...tn

jf j: ð8:6Þ
The supremum is taken over the domain fxk 2 X; tk 2 ½0; T�g, where both the spatial and temporal domains are bounded,
jXj <1 and T <1. The definition for convergence given by Eq. (8.3) is only one of many different types of convergence
which can be defined for stochastic processes, see [10].

An intuitive motivation for this form of weak convergence is to think of the functionals A as being analogues of physical
observations which would be obtained from experimental measurements of an underlying fluctuating concentration field. In
experiments any measured quantity is averaged to some extent in space and time. Such averaging is represented in the func-
tional by integrating the concentration field against the function a. Weak convergence corresponds to the situation where
the statistics of any measurement of the underlying concentration field can be reproduced by simulations up to a specified
precision provided one uses a sufficiently refined discretization mesh.

A number of simplifications can be made by utilizing linearity of the functional A and properties of c. From linearity and
the smoothness of a we have that aðx; tÞ is a Gaussian random field with well-defined pointwise values. This has the impor-
tant consequence that statistics of the random field are completely determined by the first two moments. As a result, only
the case of n 6 2 needs to be considered in Eq. (8.3).

For the system close to statistical steady-state and for sufficiently small fluctuations relative to the mean concentration it
is sufficient to consider the linearization of Eq. (2.2). This corresponds in Eq. (2.2) to a functional of the form F½c� ¼ Fc where
F denotes a linear functional. To simplify discussion of the formal analysis, for both the Laplacian and the linearized part of F
we account for contributions in one linear operator L of the reaction–diffusion system. We denote the discretization of L by
L.

In the linearized regime, taking an average of Eqs. (2.2) and (3.2) gives for the first moment a deterministic reaction–dif-
fusion equation. For the first moments the convergence follows straight-forwardly from the deterministic convergence the-
ory. We focus on demonstrating convergence of the second moments which arise from the fluctuations.

When working with the second moments it is helpful to consider the covariance function
Rðx1; t1;x2; t2Þ ¼Mð2Þ

A1 ;A2
�Mð1Þ

A1
Mð2Þ

A2
, which can be expressed as
Rðx1; t1; x2; t2Þ ¼
Z

dy1dy2

Z
ds1ds2a1ðx1; y1; s1Þqðy1; s1; y2; s2Þa2ðx2; y2; s2Þ;

qðy1; s1; y2; s2Þ ¼ ðcðy1; s1Þ � �cÞðcðy2; s2Þ � �cÞh i:
ð8:7Þ
The a1 and a2 correspond to the linear functionals A1 and A2 represented in the form of Eq. (8.1). The integrals in y1, y2 and s1,
s2 are taken over the bounded domain fðy1; y2; s1; s2Þ 2 X�X� ½0; t1� � ½0; t2�g. Similarly for the semi-discretized system we
have the covariance function eRðx1; t1;x2; t2Þ ¼Mð2ÞeA1 ;eA2

�Mð1ÞeA1
Mð2ÞeA2

, which can be expressed as
eRðx1; t1; x2; t2Þ ¼
X
m1

X
m2

Z
ds1ds2a1ðx1; ym1

; s1Þ � ~qðym1
; s1; ym2

; s2Þa2ðx2; ym2
; s2ÞDxd

m1
Dxd

m2
;

~qðym1
; s1; ym2

; s2Þ ¼ ðcm1 ðs1Þ � �cÞðcm2 ðs2Þ � �cÞ
� �

:

ð8:8Þ
Since c is a solution of Eq. (2.2), we have formally that cðy; sÞ ¼ eðs�rÞLcðy; rÞwhen s > r. The L denotes the linearized oper-
ator which accounts for contributions from the Laplacian and linearized chemical reaction functional F. The operator L is
assumed to be negative semidefinite. The etL denotes the solution operator over the time interval ½0; t� from the semi-group
associated with Eq. (2.2), see [46,54]. By the choice of stochastic driving field n in Eq. (2.1), we have
ðcðy1; s1Þ � �cÞðcðy2; s2Þ � �cÞh i ¼ eðs1�s2ÞLC; ð8:9Þ
for s1 P s2. We define C by
Cðy1; y2Þ ¼ �cdðy1 � y2Þ: ð8:10Þ
Substituting this into Eq. (8.7) yields
Rðx1; t1;x2; t2Þ ¼
Z

dy1dy2

Z
s1>s2

ds1ds2a1ðx1; y1; s1Þeðs1�s2ÞLCa2ðx2; y2; s2Þ

þ
Z

dy1dy2

Z
s2>s1

ds1ds2a2ðx2; y2; s2Þeðs2�s1ÞLCa1ðx1; y1; s1Þ:
By a similar argument for the semi-discretized Eq. (3.2) we have cðsÞ ¼ eðs�rÞLcðrÞ for s > r, where L denotes the discretized
approximation for L. The L is assumed to represent a negative semidefinite matrix. The etL denotes the matrix exponential
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providing a solution operator for the spatially discretized equations, see [61,62]. By the choice of stochastic driving field gt in
Eq. (3.10), we have
ðcðs1Þ � �cÞðcðs2Þ � �cÞT
D E

¼ eðs1�s2ÞLC; ð8:11Þ
for s1 P s2. We define C by
½C�m1 ;m2
¼ �cdm1 ;m2=Dxd

m1
: ð8:12Þ
The dm1 ;m2 denotes a Kronecker d-function. In the notation ½��m1 ;m2
denotes the ðm1;m2Þ matrix entry. Substituting this into

Eq. (8.8) yields
eRðx1; t1;x2; t2Þ ¼
X

m1 ;m2

Z
s1>s2

ds1ds2a1ðx1; ym1
; s1Þ � ½eðs2�s1ÞLC�m1 ;m2

a2ðx2; ym2
; s2ÞDxd

m1
Dxd

m2

þ
X

m1 ;m2

Z
s2>s1

ds1ds2a2ðx2; ym2
; s2Þ � ½eðs2�s1ÞLC�m1 ;m2

a1ðx1; ym1
; s1ÞDxd

m1
Dxd

m2
:

To show convergence it is useful to let
b1ðy; tÞ ¼
Z

eðt�s2ÞLCðy; y2Þa2ðx2; y2; s2Þdy2; ð8:13Þ

~b1ðym; tÞ ¼
X
m2

½eðt�s2ÞLC�m;m2
a2ðx2; ym2

; s2ÞDxd
m2

ð8:14Þ
with similar definitions for b2;
~b2. From the definitions of the operators eðt�s2ÞL and eðt�s2ÞL we have that b1 and ~b1 solve the

following differential equations with specified initial values
@b1=@t ¼ Lb1; for t > s2

b1ðy; s2Þ ¼
R

Cðy; y2Þa2ðx2; y2; s2Þdy2 for t ¼ s2

� 	
ð8:15Þ
and
d~b1=dt ¼ L~b1; for t > s2

~b1ðym; s2Þ ¼
P
m2

½C�m;m2
a2ðx2; ym2

; s2ÞDxd
m2
; for t ¼ s2

8<:
9=;: ð8:16Þ
The b2 and ~b2 solve similar differential equations. Using the specific form of C and C given in Eqs. (8.10) and (8.12) we have
that b1ðy; s2Þ ¼ a2ðx2; y; s2Þ and ~b1ðym; s2Þ ¼ a2ðx2; ym; s2Þ. From a deterministic convergence theory for the approximation of
L by the discretized operator L for such differential equations, we have
k~b1 � b1k ! 0; as Dx! 0: ð8:17Þ

For b2 and ~b2 a similar result is obtained from the deterministic convergence theory.

The difference of the covariance functions of the discretized system and continuum system can be bounded using the tri-
angle inequality by
keR � Rk 6 I1 þ I2 þ I3 þ I4; ð8:18Þ
where
I1 ¼
X

m

Z
s1>s2

ds1ds2a1ðx1; ym; s1Þ ~b1ðx1; ym; s1Þ � b1ðx1; ym; s1Þ
� �

Dxd
m

�����
�����

I2 ¼
X

m

Z
s2>s1

ds1ds2a2ðx2; ym; s2Þ ~b2ðx2; ym; s2Þ � b2ðx2; ym; s2Þ
� �

Dxd
m

�����
�����

I3 ¼
X

m

Z
s2>s1

ds1ds2a2ðx2; ym; s2Þb1ðx1; ym; s1ÞDxd
m �

Z
dy
Z

s2>s1

ds1ds2a2ðx2; y; s2Þb1ðx1; y; s1Þ
�����

�����
I4 ¼

X
m

Z
s1>s2

ds1ds2a1ðx1; ym; s1Þb2ðx2; ym; s2ÞDxd
m �

Z
dy
Z

s1>s2

ds1ds2a1ðx1; y; s1Þb2ðx2; y; s2Þ
�����

�����:

ð8:19Þ
Using properties of the norm, the I1 term can be bounded by
I1 6
X

m

Z
s1>s2

ds1ds2ja1ðx1; ym; s1ÞjDxd
m

�����
����� ~b1 � b1

�� ��:

An important property of this estimate for I1 is that the first term remains bounded as Dx! 0. This follows since a1 is com-
pactly supported. Using this fact, we have I1 ! 0 from Eq. (8.17). By a similar argument, we have I2 ! 0.
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For I3 we have the first term is the Riemann sum approximation of the second integral term in y, see Eq. (8.19). Since a1 is
compactly supported this implies I3 ! 0. By a similar argument we have I4 ! 0.

These arguments establish that I1; I2; I3; I4 ! 0 and formally show that
keR � Rk ! 0: ð8:20Þ
This along with convergence of the first moments implies
kMð2ÞeA1 ;eA2
�Mð2Þ

A1 ;A2
k ! 0: ð8:21Þ
Since the random fields are Gaussian and completely determined by the first two moments this analysis formally establishes
that the stochastic numerical methods weakly converge. An important feature of this form of weak convergence is that the
stochastic methods produce statistics convergent not only for individual observables represented by A. The stochastic meth-
ods are also convergent for any cross-correlation statistics for observables represented by A1 and A2 which reference the
same underlying concentration field. Using the same basic approach, similar results are expected to hold for other norms,
such as the L2-norm.

To obtain convergent stochastic numerical methods, the analysis indicates that it is not only required that the discreti-
zation of the differential operator L be consistent, but that the discretized system have equilibrium fluctuations with a
covariance structure C consistent with C of the continuum system. An important issue in practice is that the equilibrium
covariance structure is not discretized independently but rather arises from the fluctuations induced by the discretized sto-
chastic driving field, as in Eq. (3.2). To control the discretization errors introduced in the fluctuations of the discretized sys-
tem as the mesh is refined, we utilized a variant of the fluctuation–dissipation principle of statistical mechanics, see
Section 3. This was used to ensure that the stochastic numerical methods exhibit equilibrium fluctuations with the specified
covariance C, which was chosen to be consistent with C of the continuum system. This approach is especially important at
coarse-refined interfaces of multilevel meshes and cut-partition cells of the mesh near the domain boundaries to ensure dis-
cretizations for the stochastic driving field yield accurate stochastic numerical methods.
9. Applications

As a demonstration of the developed stochastic numerical methods, simulation studies are carried out for two applica-
tions. The first application studies the effect of fluctuations in microorganism direction sensing based on concentration gra-
dients. The case investigated concerns a single biological cell which senses concentration gradients in an environment
exhibiting a shallow gradient obscured by fluctuations. The second application studies fluctuation-induced pattern forma-
tion in spatially extended systems. A variant of the Gray–Scott chemical reactions is considered in a regime where the deter-
ministic reaction–diffusion system only exhibits a localized stationary pattern. When introducing fluctuations, a rich
collection of patterns emerge over time, in which spotted patterns migrate, combine, and replicate. In both of the applica-
tions, the adaptive features of the stochastic numerical methods are used to track at high resolution regions where the reac-
tions are chemically active.
9.1. Modeling the chemical reactions

A number of modeling issues arise for the chemical reactions in the stochastic equations, which are not present in the
deterministic setting. In the deterministic setting, it is usually assumed that the chemical species are locally well-mixed
[74]. This allows at each point in space for reactions to be modeled at the mean-field level using the same expressions as
for a homogeneous reaction chamber. In the stochastic setting the concentration field is no longer well-defined pointwise
so alternatives must be developed.

A widely used approach is to regularize the concentration fields over the length scale of the discretization lattice. This is
often done by using in the reaction expression the point-wise value from the discretized concentration field, which corre-
sponds to the locally averaged concentration over a partition cell. This has the potential to cause issues in the convergence
of the methods since the rate of reactions may depend sensitively on the numerical scheme and discretization parameters,
such as the discrete lattice spacing [6,55,56,58–60]. For such methods, spatial discretization parameters often must be care-
fully tuned not to be too large or too small relative to the distance molecules migrate between chemical reactions (reaction
mean-free path) to obtain physically reasonable results [6,55,56,58,74].

To avoid fine tuning of the discretization, we introduce additional parameters in our physical models which are indepen-
dent of the discretization. The parameters are used in regularization procedures which average the stochastic concentration
field to obtain values for use in reaction expressions. Many regularization procedures can be considered for the stochastic
fields. Ideally, such a procedure would be based on studies of particle models, dynamic simulations, or analytic reductions
of models to continuum descriptions, such as a Mori–Zwanzig theory [55,57,68,69,71,72,74–77]. Here, we take a more phe-
nomenological approach.

To model the chemical reactions we use a functional of the following form
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F½c�ðx; tÞ ¼
Z

aðx; y;gðy; tÞÞdy; ð9:1Þ

gðy; tÞ ¼
Z

bðy; zÞcðz; tÞdz: ð9:2Þ
The a; b are assumed to be smooth functions which are compactly supported. The integration used to obtain g has the effect
of smoothing the concentration field over a length scale ‘, corresponding to the support of b. The term a uses these regular-
ized concentration values and determines the rate at which the chemical reactions change the concentration of each molec-
ular species.

The regularization of solutions of Eq. (2.2) for use in the functional F can be conceptually motivated by thinking about a
collection of individual molecules which are distributed in space consistently with the continuum concentration field. The
kernels are motivated conceptually by thinking about how the molecules diffusively migrate and react over time. The change
in the spatial distribution of the molecules and in the type of the molecules ideally would yield the rates used for the change
in the continuum concentration field. From this point of view, the a accounts for the rate at which molecules of each chem-
ical species are introduced or removed at location x by the reactions. The b term models the fraction of molecules at location
z which migrate to participate in chemical reactions associated with location y. We discuss specific choices for the kernels in
Eq. (9.2) in the context of applications in Sections 9.2 and 9.3.
9.2. Microorganism direction sensing using concentration gradients

The spatial distribution of chemical species plays a fundamental role in many processes in cell biology [1]. The bacterium
Escherichia coli detects gradients in the concentration of important nutrients in the environment. The cell uses this informa-
tion to move toward more nutrient rich regions. Individual Dictyostelium discoideum bacterium cells respond to spatial and
temporal features of concentration fields of signaling molecules, such as cAMP generated by other cells, to coordinate col-
lective movements which result in the formation of fruiting bodies and spores [39,40]. In the development of multicellular
organisms, concentration fields of signaling molecules are used to determine cell differentiation and organization within tis-
sues [1,43,73,83,84]. The study of the basic mechanisms by which cells detect local concentration gradients and respond is a
fundamental part of cell biology.

Features of the external signaling concentration field are detected by cells through the binding of signaling molecules to
receptor proteins which reside in the outer cell membrane. Upon binding, receptor proteins undergo conformational changes
which trigger local chemical reactions which produce products which diffuse along the cell membrane or into the cytoplasm
[1,83,84]. While many proteins and metabolites involved in these processes are known, there remain many questions about
the particular interactions and mechanisms by which the external concentration field is detected and by which a cellular
response is generated. Currently, this is an active area of experimental and theoretical research [44,78,80–82,84,86,87].

We investigate one mechanism recently proposed for the detection of concentration gradients [33]. We study the role
played by fluctuations in the external concentration field of a signaling chemical species. To appreciate the possible impor-
tance of concentration fluctuations, it is illustrative to characterize the length and time scales encountered by individual
cells. The signaling chemical species in the typical environment of a cell can have concentrations ranging from as small
as a picomolar (pM) to as large as molar (M), see [1,35,85,86].

For illustrative purposes, we consider an intermediate concentration of 1mM and the length scale of a 100nm cubic box.
One millimolar corresponds to mM ¼ 10�3NA=litre ¼ 6:022� 1023 molecules/m3, where NA is Avogadro’s number. On the
length scale of 100 nm there is on average only 6:022� 102 molecules per box. For a rough estimate of the time scale of the
fluctuations we note that typical signaling molecules, such as cAMP, have diffusion coefficients on the order of 108 nm2=s,
see [29]. For a box with edge length ‘ ¼ 100 nm the amount of time required for a particle to diffuse out of the box is of the
order sD ¼ ‘2=D ¼ 10�4 s. This provides a rough estimate of the time scale on which fluctuations are expected to be correlated.
For very shallow concentration gradients, cells are observed to change course in chemotaxis on the time scale of seconds or
faster. This suggests that concentration fluctuations may play an important role [36]. We show how Eqs. (2.1)–(2.6) and
(2.7) and the proposed numerical methods can be used to investigate the role of fluctuations in the concentration of the
signaling chemical species.

To model how a cell initially processes a signal detected by membrane receptors, we consider a system of three basic
chemical species which originate and diffuse within the cellular membrane. The chemical species are (i) an activator molec-
ular species denoted by E, (ii) an inhibitor molecular species denoted by I, and (iii) a reporter molecular species denoted by Q.
The reporter species Q is meant to account for how the receptor binding events result in an internal chemical signal which
feeds into further cellular reactions. The internal chemical signal could take the form of chemical products within the cell
membrane or cytoplasm. The internal chemical could signal cell motility through local activation of actin polymerization,
cell polarization, or calcium release from local buffers/internal stores [1,12,33,41,84,86].

In our model, we consider each of the molecular species as being in one of two possible forms: active or inactive, which
are denoted by P� and P, respectively. Transitions between inactive and active can occur, for example, through phosphory-
lation or methylation of the individual proteins. We generically refer to this as the production of the active species or deac-
tivation of the active species. In the model, we posit that the cell processes the external signal to form the reporter products
Q by two competing processes. The first involves increases in the concentration of species E which increases the local
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production of the active reporter species Q � ! Q . The second involves increases in the concentration of species I which in-
creases the local deactivation of the reporter species Q ! Q �. The external concentration field influences these processes
through the receptor binding events which locally produce active species of E and I. More precisely, the model for the chem-
ical species inside the biological cell is given by the following system of reaction–diffusion equations
Fig. 9.1
concen
recepto
exterio
many le
bounda
bounda
@E
@t
¼ DEDE� jdeEþ jreS; ð9:3Þ

@I
@t
¼ DIDI � jdiI þ jriS; ð9:4Þ

@Q
@t
¼ DQDQ þ jqeEðQ T � QÞ � jqiIQ : ð9:5Þ
The total concentration of the reporter species is denoted by QT ¼ Q � þ Q . The S denotes the local concentration of the exter-
nal signaling chemical species which is bound to membrane receptors. The biological cell is modeled spatially as a domain
having the geometry of a disk of radius R. The cell membrane corresponds to the circle of radius R, see Fig. 9.1. The Eqs. 9.3,
9.4 and 9.5 should be considered to reside on this circular membrane with periodic boundary conditions. Three dimensional
models can also be considered using an approach similar to what we present.

The external concentration field cðx; tÞ is obtained as the solution of
@c
@t
¼ DCDc þ g; ð9:6Þ

gðx; tÞgðx0; t0Þh i ¼ �2DCDdðx� x0Þdðt � t0Þ: ð9:7Þ
For the specific choice of diffusivity tensor D ¼ DCI, this is Eq. (2.2). The concentration equation is solved on the domain exte-
rior to the disk of radius R of the biological cell and between two walls of experimental apparatus which maintain a fixed
level of concentration. To model no-flux of the signaling molecule into the biological cell, Neumann conditions are imposed
on the boundary of the disk. To model the constant level of concentration maintained at each of the walls, Dirichlet condi-
tions are imposed. The Dirichlet conditions are used to generate a concentration gradient by imposing different concentra-
tion levels at each of the walls. For the remaining top and bottom boundaries of the spatial domain, periodic boundary
. Microorganism direction sensing based on concentration gradients: basic mechanism by which a single cells senses an environmental
tration gradient through receptor binding of an external chemical species (top left). Chemical signals are generated within the cell from bound
rs which indicate the direction of the gradient (top right). An adaptive multilevel mesh is used to spatially discretize the system on the domain
r to the cell and between two walls of apparatus which control the concentration of external signaling molecules (lower left). The mesh is refined
vels near the surface of the cell to attain a high level of resolution and to capture well the geometry of the curved boundaries (lower right). Periodic
ry conditions are imposed on the upper and lower boundaries of the domain. Dirichlet boundary conditions are imposed on the left and right
ries of the domain.
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conditions are imposed. To capture the geometry of the domain for the solution we use a mesh which is both adaptive in
space and includes cut-cells near the curved surface of the biological cell, see Fig. 9.1. More complex geometries in two
and three dimensions can also be considered with a fairly straight-forward extension of the methodology proposed here.

An interesting feature of the model is the explicit representation of the external concentration field and its solution for the
given geometry of the cell. In many models in the literature a linear gradient is imposed for use in the internal chemical
kinetics of the cell. We find by solving the deterministic equations that the concentration gradient is in fact non-linear when
taking into account the no-flux boundary conditions and cellular geometry. The geometry enhances at the cell surface the
largest and smallest concentrations, which serves to amplify locally the concentration differences induced by the conditions
at the walls. This often overlooked feature could have important implications for the behaviors of models used for interpret-
ing experimental data.

The external concentration field influences the production rates of internal chemical species by receptor binding events.
The receptor binding events are modeled at a coarse level by considering the local number of molecules which are in the
vicinity of a receptor cluster. In the model we use a finite number of receptor clusters indexed by i and located at xi. The
number of molecules ni in the vicinity of the ith cluster is obtain from the external concentration field by
Table 9
Cell gra

Para

R
DC

a
DE

jre

jde

DI

jri

jdi

QT

DQ

jqe

jqi
ni ¼
Z

Kðjx� xijÞcðx; tÞdx: ð9:8Þ
The kernel is defined by KðrÞ ¼ 1 for r < a and zero otherwise. For the number of molecules bound to the ith receptor cluster,
we use the number density field
Siðx; tÞ ¼ anidðx� xiÞ: ð9:9Þ
The parameter a accounts for the fraction of molecules in the vicinity of the cluster which are bound to a receptor. For the
concentration field of all signaling molecules bound to the receptors, we use
Sðx; tÞ ¼
X

i

Siðx; tÞ: ð9:10Þ
This concentration field S plays an important role in the model by activating the excitatory chemical species at the rate jreS
and activating the inhibitory chemical species at rate jriS, see Eq. (9.3).

We investigate the effect of fluctuations on the cells ability to detect an external concentration gradient. We consider the
case where the external concentration gradient is small relative to the magnitude of the relevant fluctuations. To parame-
terize appropriately the model for this physical regime, we use kinetic rates and diffusion coefficients on the same order
of magnitude as rates found in the experimental and theoretical cell biology literature [28–37]. A summary of our specific
choice of parameters can be found in Tables 9.1 and 9.2.

The external signaling molecules are taken to have diffusion coefficients on the order of 108 nm2 s�1. This choice was
made since the signaling molecule cAMP is reported to have a diffusion coefficient of 2:7� 0:2108 nm2 s�1, see [29]. We
use diffusion coefficients for molecules diffusing inside of the cell in the reported range 105 nm2 s�1—107 nm2 s�1, see
[30,31]. Concerning the overall time scales associated with cell gradient sensing, it is observed that cells are able to respond
to changes in the external concentration field on the order of seconds [33,39]. The rates of the first order rates in the bio-
chemical chemical reactions are taken to range from 1 s�1 to 104 s�1. The rates of the second order rates in the biochemical
chemical reactions are taken to range from10�1 mM�1 s�1 to 1 mM�1s�1.

Simulations of the cell gradient sensing mechanism were carried out by using the introduced stochastic numerical meth-
ods. A time step of 2:5� 10�5 s was used and the model was simulated for 1:6� 106 time steps corresponding to a physical
time scale of 40 s. For the proposed gradient sensing mechanism, it was found that directions can be reliably detected even
when subject to significant concentration fluctuations in the external signaling chemical species. The robustness of the basic
.1
dient sensing model: description of the parameters.

meter Description

radius of the disk-shaped cell
diffusion coefficient of external signaling chemical species
receptor sensor associated length scale
diffusion coefficient of excitatory chemical species
rate of receptor initiated activation of excitatory chemical species
rate of degradation/deactivation of excitatory chemical species
diffusion coefficient of inhibitory chemical species
rate of receptor initiated activation of inhibitory chemical species
rate of degradation/deactivation of inhibitory chemical species
total concentration of reporter chemical species
diffusion coefficient of reporter chemical species
rate of production of active reporter aided by the excitatory chemical species
rate of degradation/deactivation of active reporter aided by the inhibitory chemical species



Table 9.2
Cell gradient sensing model: values of the parameters.

Parameter Description

R 2� 104 nm
DC 108 nm2 s�1

a 100 nm
DE 106 nm2 s�1

jre 104 s�1

jde 104 s�1

DI 5� 107 nm2 s�1

jri 1 s�1

jdi 1 s�1

QT 100 mM
DQ 106 nm2 s�1

jqe 10�1 mM�1 s�1

jqi 1 mM�1 s�1
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mechanism hinges on the reporter chemical species reaching a steady-state concentration on times scales long relative to the
correlation time scale of the fluctuations. The slow response of the inhibitor and reporter act to filter out many of the fluc-
tuations of the external concentration field. This has the effect of yielding a mean signal which reliably indicates the direc-
tion of the gradient. The simulation results for the fluctuations of the signaling and intracellular chemical species are
reported in Fig. 9.2.
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Fig. 9.2. Simulation results for the gradient sensing model. The mean concentration fields are plotted by the symbol � along with estimated error bars
corresponding to three standard deviations. For clarity, the concentration levels are scaled by the maximum mean concentration value for each chemical
species. The receptor activation level has a shallow concentration gradient obscured by fluctuations, see upper left. This had maximum mean concentration
of 1.5 mM. The inhibitor responds slowly to external signals and acts to filter out fluctuations, see bottom left. This had maximum mean concentration of
1.5 mM. The activator chemical species responds quickly to external signals and exhibits significant fluctuations, see bottom right. This had maximum mean
concentration of 1.5 mM. The concentration profile of the reporter chemical species which diffuses in the cell membrane yields a robust signal, see top right.
The maximum mean concentration was 9.3 mM. The combination of slow inhibitor and fast activator acts to yield a filtered signal which robustly indicates
the gradient direction.
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9.3. Fluctuation induced pattern formation in spatially extended systems

Spatial patterns emerge in many deterministic reaction–diffusion systems. A widely studied mechanism is the Turing
instability. In the Turing instability, the diffusion of the chemical species act in concert with the chemical reactions to desta-
bilize the spatially homogeneous steady-state [49]. In the deterministic case of only two chemical species, the Turing insta-
bility requires the reactions to include both positive and negative feedback in the rates of production of the chemical species
[51,52]. We consider a related mechanism by which patterns can be induced in spatially extended systems. Instead of the
mean diffusive concentration flux acting alone with the reactions to induce the formation of patterns, we discuss a param-
eter regime in which the fluctuations serve to destabilize a linearly stable steady-state. We consider parameters for which
the deterministic system settles into a stable steady-state while the stochastic system exhibits a rich collection of spatial
patterns which continually grows over time.

We consider a reaction–diffusion system with chemical reactions which are a variant of the Gray–Scott reactions [64,65].
Using Eq. (2.2), the reaction–diffusion equations can be expressed as
@u
@t
¼ D1Duþ f ½u; v� þ g1; ð9:11Þ

@v
@t
¼ D2Dv þ g½u;v � þ g2; ð9:12Þ
where g1;g2 account for the concentration fluctuations and are Gaussian random fields with mean zero and covariance
g1ðx; tÞg1ðx0; t0Þh i ¼ �2�uD1Dxdðx� x0Þdðt � t0Þ; ð9:13Þ
g2ðx; tÞg2ðx0; t0Þh i ¼ �2�vD2Dxdðx� x0Þdðt � t0Þ ð9:14Þ
g1ðx; tÞg2ðx0; t0Þh i ¼ 0: ð9:15Þ
This corresponds to the choice of the diffusion tensor with block diagonal matrices D1I and D2I in Eq. (2.2). The I denotes the
identity matrix. The D1;D2 denote the scalar isotropic diffusion coefficients of the chemical species. The chemical reactions of
the molecular species are accounted for by the functionals f ; g. In the reaction–diffusion system the concentrations of the
chemical species are chosen to be nearly homogeneous with only small variations in space. For this purpose, we use a variant
of the Gray–Scott reactions which we express as cubics of the form
f ½u;v �ðx; tÞ ¼ a6nun2
v þ a5n2

u þ a4n2
v þ a3nunv þ a2nu þ a1nv þ a0; ð9:16Þ

g½u;v �ðx; tÞ ¼ b6nun2
v þ b5n2

u þ b4n2
v þ b3nunv þ b2nu þ b1nv þ b0: ð9:17Þ
To determine the local number of molecules which participate in reactions, we use a regularization of the form discussed in
Section 9.1
nuðx; tÞ ¼
Z

Kðy � xÞuðy; tÞdy; ð9:18Þ

nvðx; tÞ ¼
Z

Kðy � xÞvðy; tÞdy: ð9:19Þ
The kernel is KðzÞ ¼ ð1=2pr2Þ expð�jzj2=2r2Þ. This provides a regularization of the concentration field over the length scale r
for use in the reactions expressions. To obtain a discrete approximation on the multilevel mesh to the integrals in Eqs. (9.18)
and (9.19), we use
~nu;m ¼
X

m

~Km;ncmDym; ð9:20Þ

~Km;n ¼
1

Zm
Kðxm � xnÞDxd

n; ð9:21Þ

Zm ¼
X

n

Kðxm � xnÞDxd
n: ð9:22Þ
We use a similar definition for ~nv ;m. The Zm normalizes the discretized kernel so the sum of the kernel over the mesh eval-
uates to one. As the mesh is refined Dx! 0, it follows that Zm ! 1; ~nu;m ! nu, and ~nv ;m ! nv . This ensures as the mesh is
refined a well-defined limit is obtained for the reaction expressions.

To study the model in a regime in which the concentrations of the chemical species are nearly homogeneous and exhibit
interesting dynamics we use the parameter values in Table 9.3. For the chemical reactions there is an associated non-spatial
two dimensional dynamical system defined by f ; g. The phase portrait of this dynamical system is given in Fig. 9.3. For the
choice of parameters, the system has dynamics in which there is only one stable steady-state at nu ¼ 1:1; nv ¼ 1:0.

To study a possible mechanism by which fluctuations can induce patterns, we choose parameters so that the phase space
exhibits some special features. In the phase space there is a region in which two nullclines pass in close proximity. This indi-
cates the chosen parameters are close to a bifurcation [88]. Given this proximity of the nullclines, even relatively small per-
turbations to the dynamical system can cause a crossing of the nullclines. Such back and fourth switching has the potential to
destabilize the steady-state, which is the mechanism we consider, see Fig. 9.3.



Table 9.3
Reaction–diffusion system: values of the parameters.

Parameter Description

½a0;a1;a2;a3;a4;a5;a6� ½1:100605;�2:2;�1:10055;2:2;1:1; 0:0;�1:1� � 106

½b0;b1; b2; b3; b4;b5;b6� ½�0:998845;1:998845;1:0;�2:0;�1:0;0:0;1:0� � 106

Du 5:5� 103

Dv 5:0� 103

L 5:632� 102

�u 1.1
�v 1.0

Fig. 9.3. Phase portrait of the local dynamics associated with the chemical reactions. There is one stable steady-state at u ¼ 1:1; v ¼ 1:0. Shown in the inset
is the region of phase space where the nullclines pass in close proximity, 1:03 < u < 1:07.
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In the reaction–diffusion system, the dynamical system associated with the chemical reactions can be associated with the
local dynamics of the system. The diffusion of chemical species acts to couple laterally these local dynamical systems. Per-
turbations are introduced in the local dynamics through the concentration fluctuations. To investigate the behavior of the
reaction–diffusion system when subject to fluctuations, we use the developed stochastic numerical methods to approximate
Eq. (9.12). To track regions in which the chemical reactions are most active, an adaptive mesh is introduced which refines the
mesh for any concentration of v above a critical threshold.
Fig. 9.4. Reaction–diffusion system in the deterministic case.



Fig. 9.5. Reaction–diffusion system with concentration fluctuations. The fluctuations induce a rich spatial pattern of spots which replicate, migrate, and
merge. Shown is the concentration field of u for the time steps 103; 104; 4� 104; 7� 104, where Dt ¼ 0:1. It is found that the spatial patterns grow to fill
the entire domain. Periodic boundary conditions are imposed at the domain boundaries. For refinement, a threshold is set for the concentration of v in a
localize region. The refinement is triggered when v is found above the threshold.
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In the simulations an initial perturbation is introduced into the system in which a small square region centered at the
origin of edge length 17.6 is set to u ¼ 1:07; v ¼ 1:03. The concentrations are set elsewhere to be u ¼ 1:1; v ¼ 1:0. This ini-
tial perturbation is introduced to avoid having to simulate fluctuations over a potentially long period of time to observe a
‘‘nucleating event”, which breaks sufficiently the translational symmetry of the homogeneous state. While spontaneous real-
ization of configurations similar to the initial perturbation are likely rare, they do have a non-zero probability of occurring in
the fluctuating stochastic system. To ensure the initial perturbation alone is not responsible for the observed results, simu-
lations were performed in the absence of fluctuations. For the deterministic system, it was found that a simple symmetric
pattern of only four spots is obtained and appears to be stable, see Fig. 9.4.

To investigate the reaction–diffusion system with fluctuations, simulations were performed using the developed stochas-
tic numerical methods. Using the same initial conditions as in the deterministic case, it is found that a rich collection of pat-
terns emerge. The pattern takes the form of spots which continually grow, migrate and replicate, see Fig. 9.5. Movies of the
full evolution process of the emerging pattern can be found on-line [79]. The simulation results show that fluctuations have
the potential to induce the formation of interesting patterns in spatially extended systems.
10. Conclusions

Stochastic Partial Differential Equations (SPDEs) were introduced for modeling concentration fluctuations in reaction dif-
fusion-systems. The SPDEs account for fluctuations arising primarily from the finite number of molecules which undergo dif-
fusive migrations as opposed to arising from the chemical reactions. For numerical approximation of the non-classical
solutions of the SPDEs a discretization approach was introduced. The discretizations for the stochastic driving fields were
derived by controlling errors in how the equilibrium fluctuations of the discrete system approximate those of the continuum
system. For the discretized stochastic driving fields, algorithms were developed for the efficient generation of random vari-
ates with the required covariance structure. Stochastic numerical methods were developed and demonstrated for discreti-
zations on meshes with multiple levels of resolution and on domains having curved boundaries. The approaches introduced
for the derivation of discretizations for the SPDEs and for the development of the stochastic numerical methods are expected
to be widely applicable in the study of spatially extended stochastic systems.
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